Pale Blue Dot Revisited
NASA

We’re living through a golden age of space exploration, from rovers landing on Mars to astronauts living on board the International Space Station to the most complex and capable telescopes ever devised sending back stunning images of the cosmos. With technology like the high definition cameras on the Perseverance rover and the incredible sensitive infrared detectors on the James Webb Space Telescope, we’re getting new views of the world beyond our own planet every day.

Some images of space stay entrenched in the public imagination, like the famous Pale blue Dot photos from 1990. It shows Earth as seen by the Voyager spacecraft just minutes before its camera was turned off. Traveling beyond the orbit of Pluto, the image shows the view when Voyager turned back around and viewed Earth — the tiny, almost imperceptible dot seen against the emptiness of space.

It famously inspired the legendary astronomer Carl Sagan, who described it in his book Pale Blue Dot: A Vision of the Human Future in Space:

“Consider again that dot. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every “superstar,” every “supreme leader,” every saint and sinner in the history of our species lived there – on a mote of dust suspended in a sunbeam.”

The version of the image shown above is a reprocessed version released by NASA in 2020, using modern processing techniques on the same data to celebrate the 30th anniversary of this remarkable image.

To carry on the cosmic journey, we’ve put together 60 of the most stunning images of space.

Painting with Jupiter

NASA, JPL-Caltech, SwRI, MSSS; Processing: Rick Lundh

When NASA was launching its Juno mission to Jupiter, it was primarily focused on using instruments like a microwave radiometer and a magnetometer to understand Jupiter’s complex gravitational and magnetic fields. But the agency decided to add a small visible light camera called JunoCam to the mission which could take images of the planet for the sake of public outreach. Although space agencies and scientists alike value public outreach, it is rare than an entire instrument is added to a mission purely for this sake, as any amount of weight and space on a spacecraft is precious.

However, JunoCam has turned out to be one of the greatest successes of the Juno mission. It regularly captures stunning views of Jupiter, and all its data is made public for anyone who wants to try their hand at image processing. This image is one of thousands captured by JunoCam, taken during a close flyby of Jupiter by Juno in 2017. It shows the dramatic cloud tops of the Jovian atmosphere, demonstrating the beauty and wonder of arguably the most iconically beautiful planets in our solar system.

Untethered in space

NASA/Flickr

Most spacewalks or extravehicular activities (EVAs) performed today are around the International Space Station, with astronauts occasionally going to the outside of the station to make repairs or to perform maintenance. These can be grueling affairs, typically lasting six or seven hours and requiring tremendous physical and mental fortitude, and they generally involve the astronauts being tethered to the outside of the station using hold down points dotted all over the exterior for just this reason.

But for a while, there was an era of unethered spacewalking. In the 1980s, during the Space Shuttle era, astronauts went untethered, with no physical anchor to hold them in place. Instead, they use a unit attached to their spacesuit called a Manned Maneuvering Unit (MMU) which allowed them to move around using thrusters. This image shows the tenth Space Shuttle mission, STS-41-B, during which two astronauts (Bruce McCandless and Robert L. Stewart) performed the first ever untethered spacewalk. Here Stewart can be seen floating over the Earth, a few meters from the Space Shuttle Challenger.

Space Shuttle rising

NASA

Before the SpaceX Crew Dragon carried its first astronauts to the International Space Station in the Demo-2 mission in 2020, the U.S. had not launched a crewed orbit spaceflight mission since the ending of the Space Shuttle program. This image shows one of the final flights of the Space Shuttle, with the launch of the Endevour in 2011 which was its last trip to space. Mission STS-134 was the 25th flight for this shuttle and carried a crew of six along with various pieces of hardware and research to the International Space Station. After the next mission STS-135 used the Atlantis shuttle, the U.S. would not launch astronauts in its own vehicle for nine years.

The Ring Nebula

NASA, ESA, Hubble Legacy Archive; Composition: Giuseppe Donatiello

Another famous and beautiful nebula is the Ring Nebula, named obviously for its ring shape. At the heart of the nebula is the hot, dense core of what was once a massive star but is now a remnant called a white dwarf. When the star was coming to the end of its life, it cast off its outer layers of gas and these layers traveled out into the space around it. As the gas interacted with the nearby environment it continued to glow, creating this structure called a planetary nebula. Despite the name, this type of nebula has nothing to do with planets. But they were given the name by early astronomers who saw their round shapes and thought they were looking at far-off planets.

Ocean moon

Saturn's geologically active moon, Enceladus.
NASA/JPL

Another famous icy moon is Saturn’s moon Enceladus, which is another prime candidate in the search for life within the solar system. This image of the moon was snapped from the Cassini mission when it passed by in 2005, getting an up-close glimpse at the most reflective object in our solar system. The image is a mosaic made up of 21 images, worked together to give a view of the features on the icy surface. This image is false color, however, so it doesn’t appear how the moon would appear to the human eye. Instead, the blue tint helps to highlight the fractures on the surface, known as tiger stripes.

ISS solar transit

<strong>ISS Solar Transit</strong> This is a 10 frame composite image that shows the International Space Station, with a crew of six onboard, in as it transits across the sun at roughly five miles per second. Shot on Saturday, Dec. 17, 2016, from Newbury Park, California.
Flickr/NASA/Joel Kowsky

The International Space Station is one of the great examples of international cooperation in science, allowing the continuous presence of humans in space for more than 20 years. Crews of typically between three and ten people occupy the station, with astronauts representing the U.S., Russia, Europe, Japan, and more. This image is a composite of 10 separate frames showing the ISS as it passes across the face of the sun, captured in 2016 from Newbury Park, California.

Blue skies on the red planet

NASA/JPL

This image from the Curiosity rover shows the strangeness of Mars in full effect. Taken between the frequent dust storms which roll across the surface and which can even build up into global events, it shows a time at which there was a large amount of dust in the atmosphere. Curiosity took an image looking skyward to document this weather pattern, and it came back with this striking visual. The dust in the air absorbs certain wavelengths of light, resulting in this stunning blue color.

The entire Milky Way

Ga­ia’s im­age of the Milky Way
ESA/Gaia/DPAC, CC BY-SA 3.0 IGO

It’s not often that you get to see the entire galaxy at once. But that is what this image shows, bringing together a huge amount of data from the European Space Agency’s Gaia mission to show the entire Milky Way. Gaia is completing a galactic census, taking a survey of the entire galaxy to look for data on stars and other bodies. Currently it has observed approximately 1.8 billion bodies, and has collected data on the movements of 1.5 billion of them.

Editors’ Recommendations






Source link